skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kate, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Crop production is among the most extensive human activities on the planet – with critical importance for global food security, land use, environmental burden, and climate. Yet despite the key role that croplands play in global land use and Earth systems, there remains little understanding of how spatial patterns of global crop cultivation have recently evolved and which crops have contributed most to these changes. Here we construct a new data library of subnational crop-specific irrigated and rainfed harvested area statistics and combine it with global gridded land cover products to develop a global gridded (5-arcminute) irrigated and rainfed cropped area (MIRCA-OS) dataset for the years 2000 to 2015 for 23 crop classes. These global data products support critical insights into the spatially detailed patterns of irrigated and rainfed cropland change since the start of the century and provide an improved foundation for a wide array of global assessments spanning agriculture, water resource management, land use change, climate impact, and sustainable development. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Synthetic ammonia production by the Haber–Bosch process revolutionized agriculture by making relatively inexpensive nitrogen (N) fertilizer widely available and enabling a rise in global food production1,2. The Haber–Bosch process relies on fossil fuels (known as grey ammonia production) and emits more than 450 Mt of CO2 annually3. Green ammonia, which is produced using renewable energy, offers a pathway to decouple ammonia production from fossil fuels and reduce CO2 emissions. As a carbon-free fuel, green ammonia could partially replace fossil fuels to decarbonize hard-to-abate sectors such as maritime shipping4. However, the widespread use of green ammonia could have complex environmental and social consequences, as it threatens to add reactive N into the biosphere3 and could disrupt fertilizer markets. In this Comment, we identify opportunities, barriers and open questions related to green ammonia production and usage as a fertilizer and beyond. We then recommend research priorities to avoid unforeseen consequences through research, monitoring and adaptation in real time. 
    more » « less
  3. Risks in globally interconnected socio-environmental systems are complex: trade, migration, climate phenomena such as El Niño, and other processes can both redistribute and modulate risks. Here we argue that risk must be investigated not only as a product of these systems but also as a force that rewires them through, for example, supply diversification, trade policy, insurance and other contracting, or cooperation. Two key questions arise: how do individuals and institutions perceive risks in these global, complex systems, and how do attempts to govern risks change how the systems function? We identify several areas for interdisciplinary research to address these questions. 
    more » « less
  4. We used a combination of approaches to measure primary production and plankton photophysiology in oligotrophic Flathead Lake, Montana (USA). Estimates of net ecosystem production (NEP) based on measurements of O2 to Ar ratios, together with radiocarbon (14C) assimilation incubations, revealed seasonal patterns in NEP and 14C-primary production. NEP was elevated during the summer, becoming negative during the winter. Rates of 14C-primary production were similarly seasonal, with peak rates in the summer and lower rates in the winter. Photosynthesis-irradiance curves indicated that plankton productivity in the subsurface chlorophyll maximum was light-limited year-round, while plankton production in the near-surface waters was light-saturated during the summer. We found that, despite physiological evidence of photoinhibition during the summer, this process appears to play a minor role in constraining primary production in Flathead Lake. Finally, use of metagenomic sequencing provided insight into photophysiological potential among the abundant cyanobacteria in the lake. Cyanobacteria belonging to Synechococcus/Cyanobium were well represented, some of which demonstrated seasonality while others appeared to be present year-round. Analyses of the metagenomic assembled genomes (MAGs) from these cyanobacteria revealed genes involved in phycoerythrin and phycoerythrobilin syntheses, with one MAG also possessing genes that encode phycourobilin. Such results point to flexibility in pigmentation as central to the physiology and competitive success of cyanobacteria in this lake. 
    more » « less
  5. Glass, Jennifer B. (Ed.)
    ABSTRACT While methane is typically produced under anoxic conditions, methane supersaturation in the presence of oxygen has been observed in both marine and fresh waters. The biological cleavage of methylphosphonate (MPn), which releases both phosphate and methane, is one pathway that may contribute to this paradox. Here, we explore the genomic and functional potential for oxic methane production (OMP) via MPn in Flathead Lake, a large oligotrophic freshwater lake in northwest Montana. Time series and depth profile measurements show that epilimnetic methane was persistently supersaturated despite high oxygen levels, suggesting a possiblein situoxic source. Metagenomic sequencing indicated that 10% of microorganisms in the lake, many of which are related to the Burkholderiales (Betaproteobacteria) and Actinomycetota, have the genomic capacity to cleave MPn. We experimentally demonstrated that these organisms produce methane stoichiometrically with MPn consumption across multiple years. However, methane was only produced at appreciable rates in the presence of MPn when a labile organic carbon source was added, suggesting that this process may be limited by both MPn and labile carbon supply. Members of the generaAcidovorax,Rhodoferax, andAllorhizobium, organisms which make up less than 1% of Flathead Lake communities, consistently responded to MPn addition. We demonstrate that the genomic and physiological potential for MPn use exists among diverse, resident members of Flathead Lake and could contribute to OMP in freshwater lakes when substrates are available. IMPORTANCEMethane is an important greenhouse gas that is typically produced under anoxic conditions. We show that methane is supersaturated in a large oligotrophic lake despite the presence of oxygen. Metagenomic sequencing indicates that diverse, widespread microorganisms may contribute to the oxic production of methane through the cleavage of methylphosphonate. We experimentally demonstrate that these organisms, especially members of the genusAcidovorax, can produce methane through this process. However, appreciable rates of methane production only occurred when both methylphosphonate and labile sources of carbon were added, indicating that this process may be limited to specific niches and may not be completely responsible for methane concentrations in Flathead Lake. This work adds to our understanding of methane dynamics by describing the organisms and the rates at which they can produce methane through an oxic pathway in a representative oligotrophic lake. 
    more » « less
  6. A growing global meat demand requires a decrease in the environmental impacts of meat production. Cultured meat (CM) can potentially address multiple challenges facing animal agriculture, including those related to animal welfare and environmental impacts, but existing cost analyses suggest it is hard for CM to match the relatively low costs of conventionally produced meat. This study analyzes literature reports to contextualize CM’s protein and calorie use efficiencies, comparing CM to animal meat products’ feed conversion ratios, areal productivities, and nitrogen management. Our analyses show that CM has greater protein and energy areal productivities than conventional meat products, and that waste nitrogen from spent media is critical to CM surpassing the nitrogen use efficiency of meat produced in swine and broiler land-applied manure systems. The CM nutrient management costs, arising from wastewater treatment and land application, are estimated to be more expensive than in conventional meat production. Overall, this study demonstrates that nitrogen management will be a key aspect of sustainability in CM production, as it is in conventional meat systems. 
    more » « less